

Novel Advanced Transparent Conductive Oxide:

From atoms to the systems

Mircea Modreanu

Tyndall National Institute, Cork, Ireland

Tyndall National Institute

 Based in Cork, at Lee Maltings

Tyndall National Institute

- Established in 2004
- Brings together researchers in:
 - Photonics
 - Microelectronics
 - Nanotechnology
 - Microsystems
- Originally from the National Microelectronics Research Centre (NMRC), University College Cork (UCC) and Cork Institute of Technology (CIT)
- >350 research engineers, scientists, students, interns & support staff
- Creates a critical mass of researchers in the field of ICT

John Tyndall, 1820 - 1893

- Born in Leighlinsbridge, Co.Carlow 1820
- Prof. of Natural Philosophy, Royal Institution 1853
- Succeeded Faraday as Director of the Royal Institution 1863
- Initiated the practical teaching of science in schools
- Developed spectroscopy
- Invented the light pipe
- Tyndall Scattering explained why the sky is blue
- Tyndallisation sterilisation process
- Studies of the atmosphere
 - First to explain the "greenhouse effect"

Mission

Mission Statement:

'Tyndall will be a Centre of Excellence for research, development and graduate training in Information and Communications Technology, recognised internationally for the quality of its outputs in materials, devices, systems and people, and its creation of new opportunities for Ireland's economic growth.'

Outline

- Introduction
 - FP6-IST-C STREP NATCO project methodology for the search of new TCOs
 - Basic requirements for p-type TCOs
- First Principle modelling of Cu₂O and SrCu₂O₂
 - Electronic band structure
 - Stability
 - *p-type conduction mechanism*
- Microstructural, vibrational and optical properties of bulk and thin films polycrystalline SrCu₂O₂
 - X-ray diffraction studies
 - Fourier Transform Infrared studies
 - Raman studies
 - Spectroscopic ellipsometry/UV-VIS-NIR spectrophotometry
- Conclusions

From Atoms To Systems: Generating Value From Research

-Reverse the current trend of "lucky discovery" in material science

-Discovery of material with predetermined properties than proceed to synthesis and characterisation

-Theoretical work should coordinated with experimental work

Framework 6 Specific Targeted Research Project "NATCO"

- NATCO: Novel and Advanced Transparent Conductive Oxides
- FP6-IST-C Future and Emerging Technology
- NATCO main objective:
 - development of novel TCOs with enhanced electrical properties and tuned transparency
 - we focus on fundamentals, synthesis, characterisation, applications of SrCu₂O₂
 - Still much work required on SrCu₂O₂ before it can be used as a TCO
 - NATCO approach combined modelling and experiment

"NATCO" consortium:

-7 partners/5 EU countries

Current and future applications for TCOs

- Transparent electrodes in flat panel displays (ITO)
- Organic light-emitting diodes,
- Touch-screen panels,
- Electrochromic windows,
- Electromagnetic shielding,
- Solar cells,
- Transparent electronics

Basic requirements for p-type TCOs

Transparent conductive oxides (TCOs) are remarkable materials: co-existence of optical transparency and of electrical conductivity

•n-type TCOs are well know: ITO

p-type TCOS are less prevalent

-First report on p-type TCOs thin films, CuAIO₂, H. Kawazoe et al (Nature 389, 939, 1997)

NATCO methodology for new TCOs

-Choice of prototype material: NATCO choice was Cu₂O

-First principles modeling is used for a better understanding of the mechanism behind the p-type TCO properties of the prototype material

-First principles studies of doping and alloying Cu₂O prototype to propose new p-type TCO candidates

-In depth studies of optical, microstructural and electrical properties of p-type TCO candidates, both as bulk and as thin films

Origin of band structure of Cu₂O

Cu

Atomic structure of stoichiometric Cu_2O with a (2x2x2) unit cell *Red = oxygen, pink = copper*

Band structure for Cu₂O

Why Cu₂O has small band gap?

Atomic structure of stoichiometric Cu_2O with a (2x2x2) unit cell

Red = oxygen, pink = copper

Two interpenetrating Cu-O-Cu networks, but not bonded ! (one light coloured and the other dark coloured)

Cu-Cu interactions are 3-dimensional network

M. Angels Carvajal et al, Chem. Eur. J. 2004, 10, 2117, A.Filippetti et al Phys. Rev. B 2005, 72, 035128, H. Raebiger et al. Phys. Rev. B, 2007, 76, 045209 M. Nolan et al, Chem Mat, 2008, 20, 5522

Why Cu₂O have small band gap?

- Remove 1 Cu₂O network, but keep stoichiometry

-Band gap increased to 1eV

Band structure for Cu₂O

Band structure for Cu₂O with one network removed.

-Disrupt Cu-Cu inter-network interaction increases the bandgap

-Motivation for studying alloys of Cu_2O_1 , e.g. $CuAIO_2$, $SrCu_2O_2$

M. Nolan et al, Chem Mat, 2008, 20, 5522; H. Kawazoe et al *Nature* 389, 939, 1997, *A. Buljan, et al. Chem. Mater.* **2001**, 13, 338, X. Nie et al PRB, 65, 075111, 2002)

First Principles Modelling of MCu₂O₂

M is alkaline earth, Mg, Ca, Sr, Ba

Tetragonal structure of MCu₂O₂:

Pink: Copper Red: Oxygen Green: Alkaline Earth

-Cu₂O: Cu-Cu interactions are 3-dimensional

 MCu_2O_2 : Cu-Cu interactions are along 1-dimensional ribbons \rightarrow this increases band gap over Cu_2O (A. Kudo et al. *Appl. Phys. Lett.* 1998, *73*, 222; **A. Buljan et al., P. *Chem. Mat.* 2001, *13*, 338)

Why SrCu₂O₂?

First principles density functional theory (DFT, PBE exchange-correlation functional) in plane wave basis set (396 eV cut-off, 2x2x1 Monkhorst-Pack sampling grid) to optimise lattice constants of MCu₂O₂ series

-Structure

- -Stability
- -Band gap

-Effective hole masses

Computed lattice constants:

MCu ₂ O ₂	a [Å]	b [Å]	c [Å]
Mg	5.112	5.112	8.838
Са	5.253	5.253	9.577
Sr	5.447	5.447	9.871
Ва	5.768	5.768	10.335

MCu₂O₂ lattice constants scale with ionic radius of alkaline earth:

Mg < Ca < Sr < Ba

This will increase Cu-Cu distances → reduce Cu-Cu interactions → increase band gap

MCu₂O₂ chemical stability

Are the alloys stable against decomposition into constituent oxides? i.e.

 $\Delta E = E(MCu_2O_2) - [E(Cu_2O) + E(MO)]$

-E(MCu₂O₂)-total energy of the bulk alloy,

-E(Cu₂O) and E(MO) total energy of bulk Cu₂O and the bulk alkaline earth oxide in the rock salt structure

Computed ΔE

MCu ₂ O ₂	∆E [eV]	
Mg	+14 eV	
Са	+0.7 eV	
Sr	-0.8 eV	
Ва	-1.0 eV	

- MgCu₂O₂ and CaCu₂O₂ are unstable SrCu₂O₂ and BaCu₂O₂ are stable.

MCu₂O₂ chemical stability

R. Kucharski et al J.of Thermal Analysis and Calorimetry, 2000, 219/G. Moiseev et al. Thermochim. Acta, 1998, 318, 201/O. Vikhreva et al. Ceramics International, 1999, 25, 153 \rightarrow have studied thermodynamic properties of MCu₂O₂

They have shown that of these alloys only, Sr- and Ba have a negative Gibbs

Free energy change for the formation of the alloy (from Cu_2O and MO)

Origin?

Pink: Copper Red: Oxygen Green: Alkaline Earth Compare M-O distances in alloy and rock salt MO oxide:

Alloy	M²+–O in MCu ₂ O ₂ / Å	M²+–O iı Å	n MO / Cation coordination and
MgCu ₂ O ₂	1.95, 2.57	2.10	M-O distances impact on stability:
CaCu ₂ O ₂	2.27, 2.63	2.40	Mg: 4 coordinate in alloy
SrCu ₂ O ₂	2.44, 2.72	2.58	Ba: 6 coordinate in alloy
BaCu ₂ O ₂	2.70, 2.89	2.77	Mg-O distances deviate

Mg-O distances deviate from Mg-O distances in MgO

Ba-O distances similar to Ba-O distances in BaO

MCu₂O₂ Band Structure and Effective hole masses

MgCu₂O₂ (0.98 eV)

 $CaCu_2O_2$ (1.47 eV)

SrCu₂O₂ (1.82 eV)

 $m^* = -9.60, -0.70, -1.90 m_e$ Increasing band energy

X. Nie et al., PRB, 2002, 65, 075111, 2002

Origin of p-type conductivity?

In Cu₂O: Cu vacancy formation is the origin of its p-type character *Acceptor defect dominate over donor defects* (*M. Nolan et al, Phys. Chem. Chem. Phys, 2006, 8, 5350; **H. Raebiger et al., Phys. Rev. B, 2007, 76, 045209) Formation energy of Cu vacancy (3 % concentration) = 0.41 eV Formation energy of O vacancy (3 % concentration = 3.08 eV

Origin of p-type conductivity?

In Cu₂O: Cu vacancy formation is the origin of its p-type character Acceptor defect dominate over donor defects Formation energy of Cu vacancy (3 % concentration) = 0.41 eV Formation energy of O vacancy (3 % concentration = 3.08 eV (*M. Nolan et al, Phys. Chem. Chem. Phys, 2006, 8, 5350; **H. Raebiger et al., Phys. Rev. B, 2007, 76, 045209)

For SrCu₂O₂?

Formation energy of Cu vacancy (3 %) = 0.57 eV

Formation energy of oxygen vacancy (3 %) = 3.86 eV

This model appears to be general for copper oxides

(also holds for CuAlO₂, *M. Nolan, Thin Solid Films, 2008, 516, 8130)

With Cu vacancy in SrCu₂O₂: Band gap *▼*1.88 eV

 $m^* = -6.66, -0.91, -1.48$

Microstructural properties of bulk SrCu₂O₂

X-ray diffraction profile from polycrystalline bulk $SrCu_2O_2$. The ticks correspond to the theoretical peak positions and peak intensities of the crystalline phases from the JCPS-ASTM databases listed on the upper figure

Optical properties of SrCu₂O₂

- •Scarce information available and no report on optical constants so far
- •Optical band gap reports:

•SrCu₂O₂ and K doped SrCu₂O₂ thin films by PLD: E_g =3.30 eV obtained by direct inversion of T and R data*(**A. Kudo et al, APL, 73 , 220, 1998*)

•Bulk polycrystalline K doped $SrCu_2O_2$: E_g =3.00 eV, PES and IPES spectroscopy**(**H.Ohta, J. Appl. Phys., 91, 5, 3074, 2002)

• Bulk polycrystalline SrCu₂O₂: Eg= 3.35 eV , spectroscopic ellipsometry (*This work*)

SrCu₂O₂ optical constants

Optical constants SrCu2O2

PLD deposition on Si substrates, T_{dep} =300°C,

Tetragonal SrCu₂O₂ Infrared active modes: bulk

Infrared active modes assigned for tetragonal SrCu₂O₂: 123, 166, 221, 289 and 579 cm⁻¹

Far-IR DRIFT spectra of $SrCu_2O_2$ powder (supplied by Umicore). Spectral resolution 8cm⁻¹, 100 scans co-added.

Five infrared active modes assigned for tetragonal SrCu₂O₂

t-SrCu₂O₂ thin films: Infrared fingerprints

t-SrCu₂O₂ fingerprint at 575cm⁻¹ (579cm⁻¹ in the bulk)

Tetragonal SrCu₂O₂ Raman active modes: bulk

Four Raman active modes assigned for t-SrCu₂O₂: 183, 231, 284, 530 cm⁻¹

t-SrCu₂O₂ thin film: Raman characterisation

Optical transparency of PLD SrCu₂O₂ films

Optical transmission and reflectance spectra of PLD SrCu₂O₂ thin films (200 nm thick, T_{dep} =300°C)

Low surface roughness: 3nm

XRD patterns for the PLD $\rm SrCu_2O_2$ thin films (200nm thick) . The red lines show the position and the intensities for $\rm SrCu_2O_2$ (JCPDS-ICDD: 38-1178)

Fundamental absorption edge: 3.30eV

Consistent with previous reports of Hosono group: A. Kudo et al, APL, 73, 220, 1998

Conclusion

- Modeling for insights into *stability*, *band gap*, *defect chemistry*
- Infrared and Raman active modes assigned for t-SrCu₂O₂
- Raman highly to disorder into SrCu₂O₂ films crystallinity (better than XRD)
- First determination on optical constants
- Understanding the mechanism enhancing Cu vacancies generation will enable improvement in SCO electrical properties

Acknowledgments

- Michael Nolan, Simon D.Elliott¹,
- Guy Garry, Bernard Servet, Olivier Durand²,
- Ekaterina Chikoidze³,
- Guido Huyberechts⁴,
- Evie L. Papadopoulou, Elias Aperathitis⁴,
- Odette Chaix, Jean-Luc Deschanvres⁵

¹Tyndall National Institute, Ireland; ²Thales Research & Technology France, France; ³GEMaC, CNRS-Université de Versailles-Saint-Quentin,France; ⁴Umicore Group Research & Development, Belgium ⁵IESL FORTH, Crete, Greece; ⁶LMGP,CNRS-INP Grenoble, France

