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Abstract. Equational logic programming deals with systems of equations

in many-sorted algebras. Paramodulation is the main rule used for obtaining

solutions. The lifting lemma is the most difficult step for proving the complete-

ness. We prove without using a lifting lemma that every solution may be found

using the paramodulation only.

1. Introduction

An equation is a formal equality of the form l=̇r in TΣ(X), the absolutely free
algebra generated by the many-sorted set of variables X. Let G be a finite set of
equations from TΣ(X). The problem of equational logic programming is (∃X)G.

We search the solution in the class of Γ-algebras, i.e. algebras satisfying a set of
conditional equations Γ. The morphism σ : TΣ(X) → TΣ(Y ) is said to be a solution
if Γ |= (∀Y )σ(G).

The paramodulation is the main method used for finding solutions. We recall
this rule. To apply this rule to a set of equations from TΣ(X) we use an axiom
(∀Y )l=̇r if H ∈ Γ (H is a set of equations from TΣ(Y ) and l=̇r is an equation in
TΣ(Y )), where Y ∩X 6= ∅. The rule is:

G ∪ C[a] −→p θ(G ∪H ∪ C[r]),

where θ : TΣ(X ∪ Y ) → TΣ(Z) is the most general unifier of a and l, G is a set of
equations from TΣ(X) and C is an extended context from TΣ(X ∪ {z}), where z is
a new variable which appears only once in C. C[a] and C[r] are the results of the
substitution of a and r for z, respectively.
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It is known that in the proof of completeness the lifting lemma is the most difficult
step. We prove without using a lifting lemma that every solution may be found using
the paramodulation only.

1. Preliminaries

Let (S, Σ) be a many-sorted signature. For a Σ-algebraA, let Sen(A) = {a=̇sb | s ∈
S, a, b ∈ As} be the set of formal equalities in A, i.e. the sentences of A.

In the sequel, we fix Γ a set of conditional equations and G ⊆ Sen(A).
We will denote by h(G) ⊆ ∆M the fact that hs(a) = hs(b), for any a=̇sb ∈ G,

where h : A→M.
As we use algebras for quantifications, it is useful to recall some definitions:
B |= (∀A)G ⇔ (∀h : A→B) h(G) ⊆ ∆B ;
Γ |= (∀A)G ⇔ (∀B |= Γ) B |= (∀A)G, i.e. for any Σ-morphism h : A → B |= Γ,

h(G) ⊆ ∆B ;
B |= (∃A)G ⇔ (∃h : A → B), h(G) ⊆ ∆B ;
Γ |= (∃A)G ⇔ (∀B |= Γ) B |= (∃A)G.

The semantic congruence associated with a Σ-algebraA, denoted by≡AΓ , is defined
by:

a ≡AΓ b ⇔ Γ |= a=̇sb ⇔ hs(a) = hs(b), for any h : A→B |= Γ.

We can easily see that

Γ |= (∀A)G if and only if G ⊆ ≡AΓ .

Proposition 2.1. If h : A→B is a Σ-morphism, then h(≡AΓ ) ⊆ ≡BΓ .

Proof. Let a ≡AΓ b and f : B→M|= Γ. Because h; f : A→M|= Γ, it follows that
(h; f)(a) = (h; f)(b), equivalent to f(h(a)) = f(h(b)). Because f is arbitrary, we
deduce that h(a) ≡BΓ h(b). ¤

Corollary 2.1. If Γ |= (∀A)G and h : A→B is a Σ-morphism, then Γ |=
(∀B)h(G).

Let A be a Σ-algebra and z a new variable of sort s such that z /∈ As. We will
denote the free Σ-algebra generated by A ∪ {z}, TΣ(A ∪ {z}), by A[z]. An element c
of A[z] is called a context if the number of occurrences of z in c is 1. For any d ∈ As,
we note (z ← d) : A[z] →A the unique Σ-morphism with the property (z ← d)(z) = d
and (z ← d)(a) = a, for any a ∈ A. For any t ∈ A[z] and a ∈ A, we shall write t[a]
instead of (z ← a)(t).

Let c ∈ A[z]s be a context and v ∈ As. A formal equation of the form c=̇sv or v=̇sc
is called an extended context . An extended context c=̇sv (or v=̇sc) will be denoted
by C. We can easily observe that (c=̇sv)[a] = (z ← a)(c=̇sv) = ((z ← a)(c)=̇s(z ←
a)(v)) = (c[a]=̇sv).

Any Σ-morphism h : A→B can be uniquely extended to a Σ-morphism hz :
A[z] →B[z] by hz(z) = z and hz(a) = h(a), for any a ∈ A. We have (z ←
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a); h = hz; (z ← h(a)), for any a ∈ A. For a context c ∈A[z], it follows that
h(c[a]) = hz(c)[h(a)], where hz(c) is a context.

If C is an extended context, then hz(C) is also an extended context and

h(C[a]) = hz(C)[h(a)].

If G ⊆ Sen(A), for an arbitrary Σ-algebra A, then a Σ-morphism u : A→B is
called a unifier of G if us(a) = us(b), for any a=̇sb ∈ G. An Σ-morphism U : A→B is
called the most general unifier of G if U is an unifier for G and for any other unifier
u : A→C, there exists a Σ-morphism σ : B→C such that u = U ;σ. We shall denote
by U = mgu{G} the fact that U is the most general unifier of G.

3. Solutions and deduction rules

Definition 3.1. A Σ-morphism s : A→B is called a solution for (∃A)G if
Γ |= (∀B)s(G).

Proposition 3.1. The composition of a solution with any Σ-morphism is also a
solution.

Proof. Let s : A→B be a solution for (∃A)G and h : B→C a Σ-morphism. We
must prove that s; h : A→C is a solution for (∃A)G, which is equivalent to show that
(s; h)(G) ⊆≡CΓ.

Because s : A→B is a solution for (∃A)G, it follows that s(G) ⊆≡BΓ . By Proposi-
tion 2.1, we deduce that h(≡BΓ) ⊆≡CΓ, therefore h(s(G)) ⊆≡CΓ. Hence s; h is a solution
for (∃A)G. ¤

By the last proposition, it follows that if we have a solution, then it is not unique.
So, we are interested in finding a solution as general as possible.

Usually, solutions are built step by step, appearing in the end as a composition of
several morphisms. The morphisms that appear in the process and which we hope to
provide a solution, are called calculated morphisms.

In the following we shall present some correct deduction rules used in logic pro-
gramming. These rules allow us to go from a set G of formal equalities to another set
G′ of formal equalities, obtaining also a calculated morphism. We shall stop applying
these rules when we get to a set of real equalities. At this point, we can compose
all the morphisms obtained so far, resulting a solution for the initial problem. This
thesis will be proved later by showing that the deduction rules are correct.

The rule of morphism: If G ⊆ Sen(TΣ(X)) and θ : TΣ(X) → TΣ(Y ), then

G −→m θ(G),

with the calculated morphism θ.

The rule of pararewriting: Let G ⊆ Sen(TΣ(X)), (∀Y )l=̇sr if H ∈ Γ and θ :
TΣ(Y ) → TΣ(X). If C is an extended context with variable z of sort s, then

G ∪ {C[θs(l)]} −→pr G ∪ θ(H) ∪ {C[θs(r)]},
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and the calculated morphism is the identity of TΣ(X).

The rule of extended paramodulation: Let (∀Y )l=̇sr if H ∈ Γ. Let X such that
X ∩ Y = ∅, G ⊆ Sen(TΣ(X)) and θ : TΣ(X ∪ Y ) → TΣ(Z) a Σ-morphism such that
θs(l) = θs(a), where a ∈ TΣ(X)s. If C is an extended context with variable z of sort
s, then

G ∪ {C[a]} −→ep θ(G ∪H ∪ {C[r]}),
with the calculated morphism θ/X

, the restriction of θ at TΣ(X).

The rule of paramodulation: Let (∀Y )l=̇sr if H ∈ Γ. Let X such that X∩Y = ∅,
G ⊆ Sen(TΣ(X)) and θ : TΣ(X∪Y ) → TΣ(Z) a Σ-morphism such that θ = mgu{l, a},
where a ∈ TΣ(X)s. If C is an extended context with variable z of sort s, then

G ∪ {C[a]} −→p θ(G ∪H ∪ {C[r]}),

with the calculated morphism θ/X
, the restriction of θ at TΣ(X).

4. Connections between the deduction rules

In the following we shall establish some connections between the deduction rules.
These results can help us prove different properties for the deduction rules.

First of all, it is obvious that the rule of paramodulation is a particular case of
that of extended paramodulation.

Proposition 4.1. The rule of pararewriting is a particular case of the rule of
extended paramodulation, where the calculated morphism is the identity.

Proof. We consider the pararewriting

G ∪ {C[hs(l)]} −→pr G ∪ h(H) ∪ {C[hs(r)]},
where (∀Y )l=̇sr if H ∈ Γ and h : TΣ(Y ) → TΣ(X) is a Σ-morphism (suppose X∩Y =
∅).

Let a = hs(l). We consider the Σ-morphism θ : TΣ(X ∪ Y ) → TΣ(X) defined by:

1. θ(y) = h(y), for any y ∈ Y ,

2. θ(x) = x, for any x ∈ X.

It is obvious that θ(t) = t, for any t ∈ TΣ(X), and θ(u) = h(u), for any u ∈ TΣ(Y ).
We can easily observe that θ(G) = G, θ(H) = h(H), θz(C) = C, θs(r) = hs(r)

and θs(a) = θs(l). Therefore we can apply the rule of extended paramodulation for
(∀Y )l=̇sr if H ∈ Γ and θ : TΣ(X ∪ Y ) → TΣ(X):

G ∪ {C[hs(l)]} = G ∪ {C[a]} −→ep θ(G ∪H ∪ {C[r]}) = θ(G) ∪ θ(H) ∪ θ(C[r]) =

= G ∪ h(H) ∪ θz(C)[θs(r)] = G ∪ h(H) ∪ C[hs(r)].
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The calculated morphism θ/X
is the identity of TΣ(X). ¤

Proposition 4.2. If for any (∀Y )l=̇sr if H in Γ, any variable from Y appears
in l, then the rule of pararewriting is a particular case of the rule of paramodulation,
where the calculated morphism is the identity.

Proof. In the framework of the proof of the last proposition, it is enough to show
that θ is the most general unifier for l and a.

Let u : TΣ(X ∪ Y ) → TΣ(Z) be an unifier for l and a. Because us(l) = us(a) =
us(hs(l)) and any variable from Y appears in l, we get that u(y) = u(h(y)), for any
y ∈ Y .

Let us denote by u|X the restriction of u at X. By definition u|X (x) = u(x), for
any x ∈ X.

Furthermore, for any x ∈ X, u|X (θ(x)) = u|X (x) = u(x), and for y ∈ Y ,
u|X (θ(y)) = u|X (h(y)) = u(h(y)) = u(y). Thus θ; u|X = u.

Hence θ is the most general unifier for l and a. ¤
Lemma 4.1. If (∀Y )t=̇st ∈ Γ, then G −→p (x ← t)(G), where x is a variable

which appears in G and does not appear in t.

Proof. We choose an occurrence of x in G. Therefore G = G′ ∪ C[x], where C is
an extended context. By the rule of paramodulation applied for (∀Y )t=̇st ∈ Γ, a = x,
θ = mgu{a, l} = mgu{x, t} = x ← t, we get:

G = G′ ∪ C[x] −→p (x ← t)(G′ ∪ C[t]) = (x ← t)(G).

The last equality is true because x does not appear in t. ¤
Lemma 4.2. (The substitution lemma) If the following conditions are fulfilled:

G is a finite set, (∀x)x=̇x ∈ Γ, for any variable x, (∀x1 ∀x2 . . . ∀xn)f(x1, x2, . . . , xn)=̇
=̇f(x1, x2, . . . , xn) ∈ Γ, for any operation symbol f , then the rule of morphism can be
obtained by the rule of paramodulation.

Proof. We prove the lemma in three steps:

(1) The substitution of any other variable y for a variable x can be obtained by the
rule of paramodulation if we have the axiom (∀y)y=̇y.

If x appears in G and x 6= y, then we apply Lemma 4.1.

(2) The substitution of a term t for a variable x can be obtained by the rule of
paramodulation in the presence of the axioms (∀x)x=̇x and

(∀x1 ∀x2 . . . ∀xn)f(x1, x2, . . . , xn)=̇f(x1, x2, . . . , xn).

We prove this step by structural induction on the complexity of t.

The basic step is just (1). Let us suppose that t = f(t1, t2, . . . , tn). If x appears
in G, by using (∀x1 ∀x2 . . . ∀xn)f(x1, x2, . . . , xn)=̇f(x1, x2, . . . , xn) ∈ Γ, where
x1, . . . , xn are new variables, and Lemma 4.1, we infer that

G −→p (x ← f(x1, x2, . . . , xn))(G).
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We can apply the induction hypothesis for the substitution of each term ti for
each variable xi, for any 1 ≤ i ≤ n. It is also obvious that

x ← f(x1, x2, . . . , xn) ; x1 ← t1 ; x2 ← t2 ; . . . ;

xn ← tn = x ← f(t1, t2, . . . , tn),

because x1, x2, . . . , xn are new variables.

(3) The rule of morphism can be obtained by the rule of paramodulation.

Let h : TΣ(X) → TΣ(Y ). Because var(G) = {x1, x2, . . . , xn} ⊆ X, the rule of
morphism is nothing more than the substitution of h(xi) for each variable xi,
1 ≤ i ≤ n. We can obtain this by using (1) and (2):

– first, we substitute a new variable zi for every variable xi, for any 1 ≤ i ≤ n:

G −→p (x1 ← z1)(G) −→p . . . −→p (xn ← zn)(. . . (x1 ← z1)(G) . . .) = G′

– then we substitute h(xi) for every variable zi, for any 1 ≤ i ≤ n:

G′ ∗−→p (z1 ← h(x1))(G′)
∗−→p . . .

∗−→p (zn ← h(xn))(. . . (z1 ← h(x1))(G′) . . .) = h(G). ¤

Paramodulation

Extended
paramodulation

Pararewriting Morphism

XXXXXXXXXXXXXXXXXz

Lemma 4.2

⋂
var(l) = Y
Prop.4.2

Q
Q

Q
QQs

Prop.4.1

¶
¶

¶
¶¶7

»»»»»»»»»»»»»»»»»»»»9

»»»»»»»»»»9

Z
ZZ+

••

Prop.4.3

Fig. 1. Connections between the deduction rules.

Proposition 4.3. The rule of extended paramodulation can be obtained from the
rule of morphism and the rule of pararewriting.

Proof. Let (∀Y )l=̇sr if H ∈ Γ, θ : TΣ(X ∪ Y ) → TΣ(Z) such that θs(l) = θs(a),
where a ∈ TΣ(X)s. Let C be an extended context.

We can apply the rule of morphism for θ and we obtain:

G ∪ {C[a]} −→m θ(G) ∪ {θ(C[a])}.

It is easy to see that

θ(C[a]) = θz(C)[θ(a)] = θz(C)[θ(l)].
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Now we can apply the rule of pararewriting and we get:

θ(G) ∪ {θz(C)[θ(l)]} −→pr θ(G) ∪ θ(H) ∪ {θz(C)[θ(r)]} = θ(G ∪H ∪ {C[r]}).

So, G ∪ {C[a]} −→m θ(G) ∪ {θz(C)[θ(l)]} −→pr θ(G ∪H ∪ {C[r]}). ¤
We can express the connections between the deduction rules through the Fig. 1.

5. Correctness of the deduction rules

Definition 5.1. Let R be a deduction rule. Suppose that if we apply rule R, we
get G −→R G′ with the calculated morphism θ. We say that R is a correct rule if the
following condition holds:

if S is a solution for G′, then θ; S is a solution for G.

If we apply only correct rules and we get to a set of true equalities, then the
composition of all the calculated morphisms is a solution for the initial problem. This
statement is true because the identity morphism is a solution for any set of true
equalities, even for the empty set.

In the following we will show that all the deduction rules used in the previous
sections are correct.

Proposition 5.1. The rule of morphism is correct. ¤
Proposition 5.2. The rule of pararewriting is correct.

Proof. Let us consider the pararewriting

G ∪ C[θs(l)] −→pr G ∪ θ(H) ∪ {C[θs(r)]},
where (∀Y )l=̇sr if H ∈ Γ and θ : TΣ(Y ) → TΣ(X) is a Σ-morphism.

Let S : TΣ(X) → B be a solution for (∃X)G ∪ θ(H) ∪ {C[θs(r)]}, i.e.

S(G ∪ θ(H) ∪ {C[θs(r)]}) ⊆ ≡BΓ . (1)

We must show that S : TΣ(X) → B is a solution for (∃X)(G ∪ C[θs(l)]), i.e.

S(G ∪ {C[θs(l)]}) ⊆ ≡BΓ .

As S(G) ⊆ ≡BΓ follows immediately from (1), it is enough to show that

S(C[θs(l)]) ∈ ≡BΓ .

Let h : B → M|= Γ. From (1) we get that

(S; h)(G) ∪ (θ; S; h)(H) ∪ {(S; h)(C[θs(r)])} ⊆ ∆M .

Therefore
(θ; S; h)(H) ⊆ ∆M , (2)
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(S; h)(C[θs(r)]) ∈ ∆M . (3)

Because M |= (∀Y )l=̇sr if H, θ;S;h : TΣ(Y ) → M is a morphism and we have
the relation (2), we obtain that

(θ; S; h)s(l) = (θ; S; h)s(r). (4)

We notice that h(S(C[θs(l)])) = (S;h)(C[θs(l)]) = (S;h)z(C)[(S; h)(θs(l))] =
(S;h)z(C)[(θs;S; h)(l)] = (S;h)z(C)[(θs; S; h)(r)] = (S; h)z(C)[(S;h)(θs(r))] =
(S;h)(C[θs(r)]).

From (3) it follows that h(S(C[θs(l)])) ∈ ∆M . Hence S(C[θs(l)]) ∈ ≡BΓ . ¤

Proposition 5.3. The rule of extended paramodulation is correct.

Proof. It follows from Propositions 4.3, 5.1 and 5.2. ¤

Corollary 5.1. The rule of paramodulation is correct.

6. Rewriting and pararewriting

For each set of formal equations Q in A, its context closure is

−→Q= {c[a]=̇c[b] | a=̇b in Q, c context}

Remark that its reflexive and transitive closure ∗−→Q is the least reflexive, transi-
tive and context closed relation which includes Q.

a ↓Q b means that there exists c such that a
∗−→Q c and b

∗−→Q c.

We fix Γ a set of conditional equations. The rewriting relation ∗=⇒Γ in a fix algebra
A may be defined as the least relation which is reflexive, transitive, compatible with
the algebra operations and closed under the rewriting rule:

RewΓ: for any (∀X)l=̇sr if H ∈ Γ and any h : TΣ(X) → A, if for any u=̇tv ∈ H
there exists auv ∈ A such that ht(u) =̇t auv and ht(v) =̇t auv, then hs(l) =̇s hs(r).

Some proves are easier to give if we have another definition of ∗=⇒Γ as ∗−→Q, where
Q is defined as follows:

Q0 = ∅
Qn+1 = {hs(l)=̇hs(r)) | (∀Y )l=̇r if H ∈ Γ, h : TΣ(Y ) → A

and (∀u =̇ v ∈ H)h(u) ↓Qn h(v)}
Q =

⋃

n≥0

Qn

A proof that the two definitions are equivalent is given in [2].
By definition a ↓Γ b ⇔ (∃c) a

∗=⇒Γ c and b
∗=⇒Γ c.
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We recall that ∆ stands for a set of true equalities. We observe that the identity
of TΣ(Y ) is a solution for (∃Y )∆, because Γ |= (∀Y )∆. Therefore, if G

∗−→p ∆ with
the calculated morphism σ, then σ is a solution for (∃X)G.

Theorem 6.1. If a ↓Γ d, then {a=̇sd} ∗−→pr ∆.

Proof. Suppose that a ↓Γ d. Then there exists v such that a
∗=⇒Γ v and d

∗=⇒Γ v.
From the definition of ∗=⇒Γ, we have a

∗−→Q v and d
∗−→Q v. Because Q =

⋃
n∈N Qn

and Q0 ⊆ Q1 ⊆ . . . ⊆ Qn ⊆ . . ., there exists n such that a
∗−→Qn

v and d
∗−→Qn

v.
Therefore a ↓Qn d.

We proof by induction on n that {a=̇sd} ∗−→pr ∆.
The case n = 0 is obvious. Suppose that for any x, y if x ↓Qn y, then {x=̇sy} ∗−→pr

∆. Suppose that a ↓Qn+1 d.
At this point, we make another induction on the number of steps −→Qn+1 used.
If the number of steps is 0, then a = d and the rest is obvious.
Otherwise, suppose, for example, that a −→Qn+1 w and w ↓Qn+1 d with a step

less. By the induction hypothesis, we get that {w=̇sd} ∗−→pr ∆.
As a →Qn+1 w, there exists (∀Y )l=̇s′r if H ∈ Γ, the Σ-morphism h : TΣ(Y ) →

TΣ(X) such that h(u) ↓Qn h(v), for each u=̇v ∈ H, and the context c in TΣ(X ∪ {z})
with the properties a = c[hs′(l)] and w = c[hs′(r)]. We remark that

{c[hs′(l)]=̇sd} −→pr h(H) ∪ {c[hs′(r)]=̇sd}.

Therefore, because {w=̇sd} ∗−→pr ∆, we infer that {a=̇sd} ∗−→pr h(H) ∪ ∆.
Because h(u) ↓Qn h(v), for any u=̇v ∈ H, by the induction hypothesis, we get
h(H) ∗−→pr ∆, hence {a=̇sd} ∗−→pr ∆. ¤

Corollary 6.1. If G is a finite set such that G ⊆↓Γ, then G
∗−→pr ∆.

7. Completeness of paramodulation

We recall that ≡Γ ⊇ ↓Γ. When the semantic congruence ≡Γ and ↓Γ are equal, ↓Γ
is said to be complete. It is known that if ∗=⇒Γ is confluent, then ↓Γ is complete.

Let us suppose that Γ is a set of conditional equations so that the followings are
fulfilled:
(∀x)x=̇x ∈ Γ, for any variable x, (∀x1 ∀x2 . . . ∀xn)f(x1, x2, . . . , xn)=̇f(x1, x2, . . . , xn) ∈
Γ, for any operation symbol f , and, for any axiom (∀Y )l=̇sr if H ∈ Γ, any variable
from Y appears in l.

Theorem 7.1. (The completeness of paramodulation) On the previous con-
ditions, if ↓Γ is complete, then any solution can be obtained by the rule of paramodu-
lation only.

Proof. Let σ : TΣ(X) → TΣ(Y ) be a solution for (∃X)G, i.e. Γ |= (∀Y )σ(G).
Therefore σ(G) ⊆≡Γ.
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Because ↓Γ is complete, we get ↓Γ=≡Γ. Hence σ(G) ⊆↓Γ. Using Corollary we
get σ(G) ∗−→pr ∆.

Because for any axiom (∀Y )l=̇sr if H ∈ Γ, any variable of Y appears in l, by
Proposition 4.2, we obtain that any pararewriting is a particular case of paramodu-
lation with the calculated morphism the identity. Therefore σ(G) ∗−→p ∆ with the
calculated morphism the identity.

By the substitution lemma, we infer that G
∗−→p σ(G), with the calculated mor-

phism σ.
So G

∗−→p ∆ with the calculated morphism σ. ¤
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