Production Processes for Micro Optics - Enabler for Energy Efficient Lighting

Mimomems Strategic Workshop
Sinaia Romania

October 11, 2009

Dipl.-Ing. C. Baum

The Fraunhofer Institute for Production Technology IPT

Executive Director
Prof. Fritz Klocke

Board of Directors
Prof. Fritz Klocke, Prof. Christian Brecher, Prof. Robert Schmitz, Prof. Günther Schuh, Prof. Andre Sharon

Activities
- Process Technology
- Production Machines
- Production Quality and Metrology
- Technology Management

Affiliated Organization
- Fraunhofer Center for Manufacturing Innovation CMI
 Boston, USA

Fraunhofer IPT

Market for Micro Optics
Production of Micro Optics
Exemplary Process Chain "FlexPAET"
Summary and Outlook

We operate a quality management system certified according to DIN ISO 9001:2000.
Micro Optics – Market Overview

- Automotive Lighting
- Metrology and Security
- Ambient Lighting
- Industrial Production
- Medical Technology
- Consumer Electronics
- Aviation

Micro Optics – Lighting Applications

Main reasons for growing demand for micro optics in lighting applications

- **Energy efficiency**
 - Trend towards LED-Technology forced by politics
 - A significant part of energy losses in lighting applications results from inefficient optics (e.g. diffusing screens, light leakages, insufficient directing of light)

- **Design aspects**
 - Growing demand for sophisticated lighting solutions for indoor and outdoor applications

Content

- Fraunhofer IPT
- Market for Micro Optics
- Production of Micro Optics
- Exemplary Process Chain “FlexPAET”
- Summary and Outlook

Demands for the Production of Micro Optics

- Multiple production technologies need to be linked
- Cost efficient and scalable production capacity range from prototypes to mass production
- Flexible, semi automated production equipment
- Multi disciplinary optimisation of process steps required
Development Steps for Micro Optics

- The development of micro optics requires efficient combination of several disciplines.

Simulation

Mastering

Combination

Mass production

Source: Contrast Optical Design Inc., Fraunhofer IPT

Two Worlds of Mastering Processes

- Lithography-based processes
- Micro machining

Source: Fraunhofer IPT, NTT Advanced Technology, Temicon GmbH, Süss GmbH

Micro Machining World: Prototyping of Pyramid Structures

- **Geometry:**
 - Pitch: 2 mm
 - Angle: 90°
 - Height: 1 mm
 - Workpiece: 140 x 140 mm²

- **Process:**
 - Spindle rotation: 1200 rpm
 - Feed: 150 mm/min
 - Cutting depth: 1.5 mm
Micro Machining World: Pyramid Structures in Brass

Geometry:
- Pitch: 2 mm
- Angle: 90°
- Height: 1 mm
- Workpiece: 155 x 20 mm²

Process:
- Spindle rotation: 1000 rpm
- Feed: 30 mm/min
- Cutting depth: 1.2 mm

Micro Machining World: Blazed Gratings

- Production of micro structures (blazed gratings) with structure width < 10 µm by diamond turning
- Production of stamp tools (40 x 40 µm²) or direct structuring surfaces by Fast-Tool-Servo
- Application in light guiding foils in lighting and display technology
- Process optimisation and advanced process know how necessary
- Development of highly dynamic ultra precision axis necessary

Lithography World

- Lithography based processes have been developed mainly for binary structures
- Entire process chains have been optimised for special high volume applications (e.g. DVD production, chip production)
- Characteristics
 - High resolution (down to 20 nm structure size)
 - High aspect ratio

Litographic 3D Patterning

- Adaption for optical applications
 - Large area applications (e.g. laser lithography process on areas > 1m²)
 - 3D-micro manufacturing (e.g. reflow processes, grey scale lithography, anisotropic etching)

Development Steps for Micro Optics

- The development of micro optics requires efficient combination of several disciplines.

Connecting Two Worlds: Combination Processes

- Components or technologies of the mastering processes can be recombined in a flexible way.
- Structural dimensions and work piece dimensions not necessarily need to be in a certain relation.
- Combination can be done by:
 - mechanical combination
 - e.g. assembly of galvanic masters
 - sequential processing
 - e.g. laser beam lithography on diamond machined surfaces
 - replicating combination
 - e.g. step and repeat hot embossing

Key Process for Mass Replication - Electroforming

- Replication of master geometries by electroforming.
- Electroforming enables the economic application of cost intensive mastering processes due to the possibilities of making high quality metallic copies.
- Production wear resistant moulds for further mass production.
Mass Production: Injection Moulding and Hot Embossing

Injection Moulding
- Medium to high volume production of polymer optics
- Simulation and iterative process optimisation enable highly accurate replication
- Multi material processes
- Substitution of assembly processes possible
- Highly automated systems available

Hot Embossing
- Very high replication quality
- Prototypes till medium batch size

Roll-to-Roll Embossing
- High volume production of optical components
- Accurate replication of structural details
- Little supplier market for the technology
- Promising technology for low-cost production of micro optical components

Content
- Fraunhofer IPT
- Market for Micro Optics
- Production of Micro Optics
- Exemplary Process Chain “FlexPAET”
- Summary and Outlook

FlexPAET - Introduction
- **FlexPAET**
 - Flexible Patterning of Complex Micro Structures using Adaptive Embossing Technology

Project Goal
- Development of a production chain using
 - micro embossing
 - surface structuring and
 - mass replication for the production of large area micro structured optical components

Project Start
- October 2008

Project Duration
- 3 Years
EU Project - FlexPAET

- **Adaptive Embossing Technology**
 - Flexible
 - Self-optimising fabrication
 - Large area micro-structured surfaces
- **Step embossing**: Master structures will be manufactured directly into thermoplastic substrates by step and repeat embossing.
- **Self optimization**: In-situ metrology to analyse the optical performance of the master substrate.
- **An optimisation algorithm** will determine necessary rework.
- **Replication Process**: Master will be used to produce a mould – galvanic process.
- **Forming**: Moulds will be used for replication.

Lightguide Design

- **Lightguide bases on a structured plate or film**
- **Structural elements are** blazed gratings with sizes in the range of few microns.
- **High energy efficient** lightguides need optimal adapted structure density and 3-dimensional patterns.
- A back light unit contains several million grating pixels.

Content

- Fraunhofer IPT
- Market for Micro Optics
- Production of Micro Optics
- Exemplary Process Chain “FlexPAET”
- Summary and Outlook

Summary and Outlook

- **Excellent market opportunities for the design and production of micro optics.**
- **Growing demand for lighting applications.**
- **Flexible, semi-automated production equipment is needed.**
- **Linking and optimising existing technologies is most important for the economic production of micro optics.**

Source: Süss GmbH