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Abstract. This work presents a study of a new binary coded firefly algo-
rithm. The firefly algorithm is a novel nature-inspired metaheuristic, inspired
by the social behavior of fireflies, which is being applied to solve many opti-
mization problems. We test the proposed binary coded firefly algorithm solving
the non-unicost set covering problem which is a well-known NP-hard discrete
optimization problem with many practical applications. To tackle the mapping
from a continuous search space to a discrete search space we use different transfer
functions which are investigated in terms of convergence speed and accuracy of
results. The experimental results show the effectiveness of our approach where
the binary coded firefly algorithm produce competitive results solving a portfolio
of set covering problems from the OR-Library.
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1. Introduction

The Set Covering Problem (SCP) is a class of representative combinatorial opti-
mization problem that has been applied to many real world problems, such as crew
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scheduling in airlines [20], facility location problem [27], and production planning in
industry [28]. The SCP is a well-known NP-hard in the strong sense [18]. Many
algorithms have been developed to solve it and has been reported to literature. Ex-
act algorithms are mostly based on branch-and-bound and branch-and-cut [2, 16].
However, these algorithms are rather time consuming and can only solve instances
of very limited size. For this reason, many research efforts have been focused on the
development of heuristics to find good or near-optimal solutions within a reasonable
period of time. Classical greedy algorithms are very simple, fast, and easy to code in
practice, but they rarely produce high quality solutions for their myopic and deter-
ministic nature [9]. Compared with classical greedy algorithms, heuristics based on
Lagrangian relaxation with subgradient optimization are much more effective. The
most efficient ones are those proposed in [8, 6]. As top-level general search strategies,
metaheuristics such as genetic algorithms [3], simulated annealing [5], tabu search
[7], evolutionary algorithms [10], ant colony optimization (ACO) [24, 13], electromag-
netism (unicost SCP) [23], gravitational emulation search [1] and cultural algorithms
[12] have been also successfully applied to solve the SCP.

In this paper, we propose a binary Firefly Algorithm to solve the SCP. The Firefly
Algorithm (FA) is a recently developed, population-based metaheuristic [30, 29] where
the objective function of a given optimization problem is based on differences of light
intensity. Thus, fireflies are characterized by their light intensity which helps fireflies
to change their position iteratively towards more attractive locations in order to obtain
optimal solutions. The canonical FA algorithm is developed to tackle continuous
optimization problems [17, 31]. However, the effectiveness of the FA algorithm to
solve discrete NP-hard problems such as image compression and processing [19], shape
and size optimization [21] and manufacturing cell problem [25] encourage researchers
to design novel FAs for discrete optimization problems. To the best of our knowledge,
this is the first work proposing a binary coded FA to solve the SCP.

The rest of this paper is organized as follows. In Section 2, we give a formal
definition of the SCP. The Section 3, describes the FA and the Section 4 describes
the proposed approach. In Section 5, we present experimental results obtained when
applying the algorithm for solving the 65 instances of SCP contained in the OR-
Library. Finally, in Section 6 we conclude and highlight future directions of research.

2. Problem Description

The Set Covering Problem (SCP) can be formally defined as follows. Let A = (a;;)
be an m-row, n-column, zero-one matrix. We say that a column j covers a row
i if a;; = 1. Each column j is associated with a nonnegative real cost c;. Let
I={1,..,m}and J = {1,....,n} be the row set and column set, respectively. The
SCP calls for a minimum cost subset S C J, such that each row i € I is covered by
at least one column j € S. A mathematical model for the SCP is

Minimize f(x)= chxj (1)
j=1
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subject to
Zaijxj >1, Viel (2)
j=1
z; €{0,1}, VjeJ (3)

The goal is to minimize the sum of the costs of the selected columns, where z; =1 if
the column j is in the solution, 0 otherwise. The restrictions ensure that each row ¢
is covered by at least one column.

3. Overview of Firefly Algorithm

Nature-inspired methodologies are among the most powerful algorithms for opti-
mization problems. The Firefly Algorithm (FA) is a novel nature-inspired algorithm
inspired by the social behavior of fireflies. By idealizing some of the flashing character-
istics of fireflies, a firefly-inspired algorithm was presented in [30, 29]. The canonical
FA was developed using the following three idealized rules:

e All fireflies are unisex and are attracted to other fireflies regardless of their sex.

e The degree of the attractiveness of a firefly is proportional to its brightness, and
thus for any two flashing fireflies, the one that is less bright will move towards
to the brighter one. More brightness means less distance between two fireflies.
However, if any two flashing fireflies have the same brightness, then they move
randomly.

e The brightness of a firefly is determined by the value of the objective function.
For a maximization problem, the brightness of each firefly is proportional to the
value of the objective function.

As the attractiveness of a firefly is proportional to the light intensity seen by
adjacent fireflies, the attractiveness 3 of a firefly is defined as follows:

B(r) = Boe™ ", m>1 (4)

where 7 is the distance between two fireflies, 5y is the attractiveness at r = 0 and
is a fixed light absorption coefficient. The distance 7;; between two fireflies i and j
at positions z; and x; is determined by

rij = |z — 4| =

where xf is the current value of the k;, dimension of the i*” firefly and d is the number
of dimensions. The movement of a firefly ¢ is attracted to another more attractive
(brighter) firefly j is determined by

o e+ 1) = 2 (1) + foe "5 k(1) — 2 (1) + afrand - ) (6)
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where the first term 2% (¢) is the current value (current position) of the k¢, dimension

of the firefly i at iteration ¢t. The second term denotes the firefly attractiveness where
v characterizes the variation of the attractiveness typically varying from 0.1 to 10 [30],
and the last term introduces randomization, with a € [0, 1] being the randomization
parameter and rand is a random number generator uniformly distributed between 0
and 1.

4. Description of the proposed approach

In this section, a discrete FA is proposed to solve the SCP.

Step 1. Initialize the firefly parameters (v, fo, size for the firefly population and the
maximum number of generations for the termination process).

Step 2. Initialization of firefly position. Initialize randomly M = [X7;...; X;,] of m
solutions or firefly positions in the multi-dimensional search space, where m
represents the size of the firefly population. Each solution of X is represented
by a d-dimensional binary vector.

Step 3. Evaluation of fitness of the population. For this case the function of fitness
is equal to the objective function of the SCP model (Eq. 1).

Step 4. Modification of firefly position. A firefly produces a modification in its posi-
tion based on the brightness w.r.t other fireflies. Using Eq. 6 the new position
is determined by modifying the value of each dimension of a firefly. To move
from a continuous search space to a discrete one we work with the following
update rules individually:

1 if rand < T(zF(t + 1))

dern={ g ™)

otherwise
-1 k
% _ x if rand < T(zF(t + 1))
zi(t+1) = { z¥(t)  otherwise (8)

& [ 2k ifrand < T(ak(t+1))
zt+1) = { 0  otherwise (9)
where rand is a uniform random number between 0 and 1, 2% (¢) is the value of
the k" dimension of the firefly i at iteration ¢, z¥(¢ + 1) is the value resulting
from the formula 6 (movement of the firefly), ! is the complement of x¥(t)
(i.e. if the vale of the k*" dimension is 0 then it is set to 1 and vice versa), z*
is the best firefly so far, and T'(z) is the binary transfer function [22].

The transfer functions force the values of the dimensions of fireflies to move in a
binary space. Due to the shapes of these curves, they are named s-shaped and
v-shaped transfer functions [22] (Fig. 1). These transfer functions are presented
in Table 1.
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Step 5. The new solution is evaluated and if it is not a feasible solution then it is
repaired. In order to make feasible solutions we determine which rows have
not yet been covered and choose the columns needed for coverage. The criteria
used to choose these columns is based in the cost of a column/number of rows
not covered that cover the column j. Once the solution has become feasible we
apply an optimization step in order to eliminate those redundant columns. A
column is redundant when it is removed and the solution remains feasible.

Step 6. Memorize the best solution achieved so far and increment the counter of
generations.

Step 7. Stop the process and display the result if the termination criteria is satisfied.
Termination criteria used in this work is the maximum number of generations.
Otherwise, go to step 3.

Algorithm 1 shows the pseudo code of the steps proposed. Line 21 is written to a
better understanding, but in practical terms it is omitted.

Algorithm 1: Pseudo code of Binary FA for SCP

1 Begin

Initialize parameters

3 Evaluate the light intensity I determined by f(z) Eq. 1
4  while t < MaxzGeneration do

5 for i =1:m (m fireflies) do

6 for j =1:m (m fireflies) do
7
8

[\

if (I; < I;) then
movement = calculates value according to Table 77

9 if (rand() < T(movement)) then

10 switch rule do

11 case (7)

12 fireflies[i][j] =1

13 case (8)

14 fireflies[i][j] = complement (fireflies[i][j])
15 case (9)

16 fireflies[i][j] = bestFire fly[j]
17 end switch

18 else

19 switch rule do

20 case (8)

21 fireflies[i][j] = fireflies[i][j]
22 otherwise

23 fireflies[i][j] =0

24 end switch

25 end if

26 end if

27 Repair solutions
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28 Update attractiveness
29 Update light intensity
30 end for j

31 end for i

32 t=t+1
33 end while
34 Output the results

35 End
Table 1. S-shaped and v-shaped transfer functions
S-shaped family V-shaped family

Name | Transfer function | Name | Transfer function

S1 T(x) = 1o== V1 T(z) = erf(%x)‘ = |2 fOQI eitzdt'
S2 T(x) = o= V2

S3 T(x)=1m | V3

S4 T(z)= 5w | V4

5. Experimental evaluation

Fig. 1. (a) s-shaped and (b) v-shaped transfer functions.
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In order to test the effectiveness of our proposal, the binary FA was tested using

the 65 SCP test instances from OR-Library [4].

These instances are divided into

11 groups and each group contains 5 or 10 instances. Table 2 shows their detailed
information where “Density” is the percentage of non-zero entries in the SCP matrix.
The algorithm was implemented using C language and conducted on a 1.8 GHz Intel

Core 2 Duo T5670 CPU with 3GB RAM running Windows 8.

In all experiments, the binary FA is executed 30 times over each SCP instance
and the maximum number of generations is set to 50. We used a population of 25
fireflies and the values of «y, §y are initialized to 1. These parameters were selected
empirically after a large number of tests over all the SCP instances.
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Table 2. Details of the test instances

Instance set | No. of instances | m n Cost range | Density (%) | Optimal solution
4 10 200 1000 1, 100 2 Known
5 10 200 | 2000 1, 100 2 Known
6 5 200 | 1000 1, 100 5 Known
A 5 300 | 3000 1, 100 2 Known
B 5 300 | 3000 1, 100 5 Known
C 5 400 4000 1, 100 2 Known
D 5 400 | 4000 1, 100 5 Known

NRE 5 500 | 5000 1, 100 10 Unknown
NRF 5 500 | 5000 1, 100 20 Unknown
NRG 5 1000 | 10000 1, 100 2 Unknown
NRH 5 1000 | 10000 1, 100 5 Unknown

Figure 2 shows the convergence of the instance SCP4.1 using the rule (7) with the
v-shape transfer functions. Figure 3 shows the convergence of the instance SCP4.1
using the rule (8) with the v-shape transfer functions, In this figure, the convergence
of V2 and V3 are not appreciated because the values of the solutions are very similar
to the values of the transfer function V4.

The Figs. 2 and 3 do not consider the s-shape transfer functions because the
solutions do not improve through the iterations. In these cases, the s-shape transfer
functions generate repeatedly more 1s than Os increasing the value of the objective
function of the SCP model.

Figure 4 shows the convergence of the instance SCP4.1 using the rule (9) and the
s-shape and v-shape transfer functions. The results show that the v-shape transfer
functions have a fast convergence rate.

4,000 «
— V1
— V2
3,000 V3
’ il V4
-
3 2,000 |
Q
1,000 |
0 + + + +
10 20 30 40 50

Iteration

Fig. 2. Different evolutions for SCP4.1 using rule (7).
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Fig. 3. Different evolutions for SCP4.1 using rule (8).

10 20 30 40 50
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Fig. 4. Different evolutions of mean best values for SCP4.1
using rule (9) with s-shape and v-shape transfer functions.
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Tables 3 and 4 show the results obtained over the 65 instances using the V4
function (the best performance transfer function) using the rule (9). The quality of
a solution is evaluated using the relative percentage deviation (RPD). The RPD
value quantifies the deviation of the objective value Z from Z,,; which in our case is
the best known cost value for each instance (see the second column). We report the
minimum, maximum, and average of the obtained solutions. To compute RPD we
use Z = Min.. This measure is computed as follows:
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RPD = (Z = Zopt)/ Zopt x 100

B. Crawford et al.

(10)

The results expressed in terms of the RPD show the effectiveness of our approach.
It provides high quality near optimal solutions and it has the ability to generate them

for a variety of instances.

Table 3. Experimental results over the 65 instances
of SCP (using V4 and rule (9)). Part 1

| Instance | Opt. | Min. | Max. | Avg. | RPD |
4.1 429 481 482 481.03 | 12.12
4.2 512 580 580 580.00 | 13.28
4.3 516 619 620 | 619.03 | 19.96
4.4 494 537 537 537.00 8.7
4.5 512 609 609 609.00 | 18.94
4.6 560 653 653 | 653.00 16.6
4.7 430 491 492 491.07 | 14.18
4.8 492 565 565 565.00 | 14.83
4.9 641 749 750 | 749.03 | 16.84
4.10 514 550 550 550.00 7.0
5.1 253 296 297 296.03 | 16.99
5.2 302 372 372 | 372.00 | 23.17
5.3 226 250 250 | 250.00 | 10.61
5.4 242 277 278 277.07 | 14.46
5.5 211 253 253 | 253.00 19.9
5.6 213 264 265 264.03 | 23.94
5.7 293 337 337 337.00 | 15.01
5.8 288 326 326 | 326.00 | 13.19
5.9 279 350 350 | 350.00 | 25.44
5.10 265 321 321 321.00 | 21.13
6.1 138 173 174 | 173.03 | 25.36
6.2 146 180 181 180.07 | 23.28
6.3 145 160 160 160.00 | 10.34
6.4 131 161 161 161.00 22.9
6.5 161 186 186 186.00 | 15.52
Al 253 285 285 285.00 | 12.64
A2 252 285 286 | 285.07 | 13.09
A3 232 272 272 272.00 | 17.24
A4 234 297 297 297.00 | 26.92
A5 236 262 262 262.00 | 11.01
B.1 69 80 81 80.03 | 15.94
B.2 76 92 92 92.00 21.05
B.3 80 93 93 93.00 16.25
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Table 4. Experimental results on 65 instances
of SCP (using V4 and rule (9)). Part 2

| Instance | Opt. | Min. | Max. | Avg. [ RPD

B.4 79 98 99 98.03 | 24.05
B.5 72 87 87 87.00 | 20.83
C.1 227 279 279 | 279.00 | 22.90
C.2 219 272 272 | 272.00 | 24.20
C.3 243 288 288 | 288.00 | 18.51
C.4 219 262 262 | 262.00 | 19.63
C.5 215 262 263 | 262.07 | 21.86
D.1 60 71 71 71.00 | 18.33
D.2 66 75 75 75.00 | 13.63
D.3 72 88 88 88.00 | 22.22
D4 62 71 71 71.00 | 14.51
D.5 61 71 71 71.00 | 16.39
NRE.1 29 32 33 32.03 | 10.34
NRE.2 30 36 36 36.00 20
NRE.3 27 35 35 35.00 | 29.62
NRE.4 28 34 34 34.00 | 21.42
NRE.5 28 34 34 34.00 | 21.42
NRF.1 14 17 18 17.03 | 21.42
NRF.2 15 17 17 17.00 | 13.33
NRF.3 14 21 21 21.00 50
NRF 4 14 19 19 19.00 | 35.71
NRF.5 13 16 16 16.00 | 23.07
NRG.1 176 230 231 | 230.03 | 30.68
NRG.2 154 191 191 191.00 | 24.02
NRG.3 166 198 198 | 198.00 | 19.27
NRG.4 168 214 214 | 214.00 | 27.38
NRG.5 168 223 223 | 223.00 | 32.73
NRH.1 63 85 86 85.07 | 34.92
NRH.2 63 81 82 81.03 | 28.57
NRH.3 59 76 76 76.00 | 28.81
NRH.4 58 75 75 75.00 | 29.31
NRH.5 55 68 68 68.00 | 23.63

6. Conclusion
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In this paper, a binary FA has been proposed to solve the SCP. The effectiveness
of the proposed approach was tested on benchmark problems and the obtained results
show that the binary FA is a good alternative to solve the SCP.

The results show that the v-shape transfer functions with the rules (7), (8) and (9)
of updating position vectors converge faster than the s-shape transfer functions which
generate repeatedly more 1s than Os increasing the value of the objective function of

the SCP model.
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An interesting research direction of future work is the integration of autonomous
search (AS) in the solving process, which in many cases has demonstrated excellent
results [14, 26, 15, 11]. AS provides a framework to design systems that are able to
autonomously self-tune their performance while effectively solving problems. Thus,
problem solvers can now perform self-improvement operations based on analysis of
the performances of the solving process.
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