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Abstract. A topological index can be considered as a transformation of a

chemical structure into a real number. The degree based topological indices such

as Randić index, geometric-arithmetic (GA) index and atom-bond connectivity

(ABC) index are of vital importance among all topological indices. These topo-

logical descriptors significantly correlate certain physico-chemical properties of the

corresponding chemical compounds. Graph theory has been found to be very useful

in this area of research.

The topological indices of certain interconnection and mesh derived networks are

recently studied by Imran et al. [17]. In this paper, we define some new classes of

networks from honeycomb networks by using basic graph operations like stellation,

medial and dual of a graph. We derive analytical close formulas of general Randić

index Rα(G) (for different values of α) for hexagonal and honeycomb derived net-

works. We also compute first Zagreb, ABC, and GA indices for these important

classes of networks.
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1. Introduction and preliminary results

A topological index is a function “Top” defined from
∑

to the set of real numbers,
where

∑
is the set of all finite simple graphs such that for G,H ∈

∑
, we have

Top(G) = Top(H) if G and H are isomorphic. A topological index is a numeric
quantity associated with the chemical constitution of a chemical compound aiming
the correlation of chemical structure with many of its physico-chemical properties,
chemical reactivity or biological activities. Topological indices are designed on the
ground of transformation of a molecular graph into a number which characterize the
topology of that graph.

Motivated by the chemical significance of topological indices, a lot of research has
been done in this area and different graph families have been studied. For example, a
fixed interconnection parallel architecture is characterized by a graph, with vertices
corresponding to processing nodes and edges representing communication links. Inter-
connection networks are notoriously hard to compare in abstract terms. Researchers
in parallel processing are thus motivated to propose new and improved interconnec-
tion networks, arguing the benefits and offering performance evaluations in different
contexts [6, 33]. A few networks such as hexagonal, honeycomb, and grid networks,
for instance, bear resemblance to atomic or molecular lattice structures. These net-
works have very interesting topological properties which have been studied in different
aspects in [1, 2, 7, 12, 17, 22, 26].

The hexagonal and honeycomb networks have also been recognized as crucial for
evolutionary biology, in particular for the evolution of cooperation, where the overlap-
ping triangles are vital for the propagation of cooperation in social dilemmas. Relevant
research that applies this theory and which could benefit further from the insights of
the new research is found in [24, 25, 29, 32].

A graph G(V,E) with vertex set V and edge set E is said to be connected, if
there exist a connection between any pair of vertices in G. A network is a connected
graph having no multiple edges and loops. A planar graph, usually represented as
G(V,E, F ), where F is the set of all regions (or faces), is a graph which can be drawn
in the plane without crossing any edge, and such a drawing of G is called its plane
drawing. A chemical graph is a graph whose vertices denote atoms and edges denote
chemical bonds between atoms of the underlying chemical structure.

A (u, v)-path of length l in G is a sequence of l+ 1 vertices and l edges, from u to
v, where u, v ∈ V . The degree du of a vertex u ∈ V is the number of vertices which
are connected to u by an edge. In a chemical graph the degree of any vertex is atmost
4. The distance between two vertices u and v is denoted as d(u, v) and is the shortest
path between u and v in G. The length of shortest path between u and v is also called
u − v geodesic. The longest path between any two vertices u, v ∈ V , is called u − v
detour.

Throughout this paper, G is considered to be a network with vertex set V (G),
edge set E(G) and du is the degree of vertex u ∈ V (G). The notations used in this
paper are mainly taken from the books [8, 10].
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The theory of topological indices has its origin in the work done by Harold Wiener
in 1947 while he was working on boiling point of paraffin. He named this index as
path number. Later on, the term “path number” was renamed as Wiener index [31].

Definition 1.1. Let G be a graph. Then the Wiener index of G is defined as

W (G) =
1

2

∑
(u,v)

d(u, v),

where (u, v) is any ordered pair of vertices in G and d(u, v) is the length of an u− v
geodesic. One of the oldest degree based topological index is Randić index [27] which
was introduced by Milan Randić in 1975.

Definition 1.2. The Randić index of graph G is defined as

R− 1
2
(G) =

∑
uv∈E(G)

1√
dudv

.

The general Randić index was proposed by Bollobás and Erdös [4] and Amic et al.
[3] independently, in 1998. Since then it has been extensively studied by both math-
ematicians and theoretical chemists [16]. Many important mathematical properties
have been established [5] and a survey of results can be found in [20].
The general Randić index Rα(G) is the sum of (dudv)

α over all edges e = uv ∈ E(G)
defined as

Rα(G) =
∑

uv∈E(G)

(dudv)
α. (1)

It can be seen that R− 1
2
(G) is the particular case of Rα(G), when α = − 1

2 .
An important topological index introduced about forty years ago by Gutman and
Trinajstić [11] is the Zagreb index or more precisely first Zagreb index, defined as
follows.

Definition 1.3. Consider a graph G, then first Zagreb index is defined as

M1(G) =
∑

uv∈E(G)

(du + dv). (2)

The second Zagreb index is defined in the following way.

Definition 1.4. Consider a graph G, then second Zagreb index is defined as

M2(G) =
∑

uv∈E(G)

(du × dv). (3)

One of the well-known degree based topological indices is the atom-bond connec-
tivity (ABC) index introduced by Estrada et al. in [9].
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Definition 1.5. For a graph G, the ABC index is defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
. (4)

Another well-known connectivity topological descriptor is geometric-arithmetic
(GA) index which was introduced by Vukičević et al. in [30].

Definition 1.6. Consider a graph G, then its GA index is defined as

GA(G) =
∑

uv∈E(G)

2
√
dudv

(du + dv)
. (5)

2. Main results

In this paper, we construct some new structures derived from hexagonal and hon-
eycomb networks by using some basic graph operations. We give closed analytic for-
mulas of the general Randić Rα(G), first Zagreb M1(G), atom-bond connectivity
ABC(G) and geometric-arithmeticGA(G) indices for these hexagonal and honeycomb
derived networks. For further study of topological indices of various graph families
see [13–15, 19, 21].

2.1. Honeycomb derived networks

There are numerous open problems suggested for various interconnection networks.
To quote Stojmenovic [28]:

Designing new architectures remains an area of intensive investigation given
that there is no clear winner among existing ones.

In hexagonal network HX(n), the parameter n is the number of vertices on each
side of the network, whereas for honeycomb network HC(n), n is the number of
hexagons between boundary and central hexagon. Topological indices of hexagonal,
honeycomb and other related networks have been studied in [26].

If we add a vertex in each face of a planar graph G and then join it to all the
vertices of the respective face, we get the stellation of G, denoted as St(G) [23]. The
dual of a planar graph G, denoted by Du(G), is a graph whose vertex set is the set of
faces of G, where two vertices f ′ and g′ are joined in Du(G) by an edge e′ if the faces
f and g share the edge e in graph G. Clearly the number of vertices of Du(G) is equal
to the number of faces of G and the number of edges of Du(G) is equal to the number
of edges of G. Since every planar graph has exactly one unbounded face, by deleting
the vertex corresponding to the unbounded face in Du(G), we get the bounded dual
of the graph G, denoted as Bdu(G). These two operations are explained in Fig. 2.
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(a). Hexagonal network (b). Honeycomb network

Fig. 1. (a) A hexagonal network of dimension 4; (b) A 3-dimensional honeycomb network.

The graph G

Dual of G (dotted)

Bounded dual of G (dotted) Medial of G (dotted)

Stellation of G (dotted)

Fig. 2. Stellation, dual, bounded dual and medial of a graph G.
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In this section, we derive some new classes of networks from honeycomb network
by using some basic graph operations like stellation, bounded dual and medial of a
graph. These operations are already defined and explained in previous section. It can
easily be observed that the bounded dual of n-dimensional honeycomb networks is
the n-dimensional hexagonal network. Table 1 shows derivation of honeycomb de-
rived networks in which G is the honeycomb networks, St(G) is the stellation of G
and Bdu(G) is the bounded dual of G. We denote n-dimensional honeycomb derived
network of first type as HcDN1(n) and of second type as HcDN2(n).

Table 1. Derivation of honeycomb derived networks

G∪ St(G)∪ Bdu(G)∪ Md(G) Planar/Non-planar

HcDN1 X × × Planar

HcDN2 X X × Non-planar

HcDN3 X × X Non-planar

HcDN4 X X X Non-planar

Now we study the topological indices of honeycomb derived networks of first type
i.e. HcDN1(n). A 3-dimensional HcDN1 network is depicted in Fig. 3, in which
black colored graph is 3-dimensional honeycomb network and blue colored graph is
its stellation.

Fig. 3. An HcDN1(n) network with n = 3.

Now we compute degree based topological indices of honeycomb derived (HcDN1)
networks in the following theorems. First, we compute general Randić index Rα(G),
with α = 1,−1, 12 ,−

1
2 .

Theorem 2.1.1. Consider the honeycomb derived network HcDN1(n), n ≥ 3,
then its general Randić index is equal to
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Rα(HcDN1(n)) =



972n2 − 1224n+ 414, α = 1;

162n2 + (12
√

15 + 18
√

2 + 18
√

30−

342)n− 12
√

15− 18
√

30 + 234, α =
1

2
;

3

4
n2 +

3

20
n+

1

10
, α = −1;

9

2
n2 +

(4
√

15

5
+

3
√

30

5
+
√

2− 19

2

)
n−

4
√

15

5
− 3
√

30

5
+ 7, α = −1

2
.

Proof. Let G be the HcDN1(n) network of dimension n. The number of vertices
and edges in HcDN1(n) are 9n2 − 3n + 1 and 27n2 − 21n + 6, respectively. There
are five types of edges in HcDN1(n) based on degrees of end vertices of each edge.
Table 2 shows such an edge partition of HcDN1(n).

Table 2. Edge partition of honeycomb
derived network HcDN1(n), n ≥ 3 based on

degrees of end vertices of each edge

(du, dv) where uv ∈ E(G) Number of edges

(3, 3) 6

(3, 5) 12(n− 1)

(3, 6) 6n

(5, 6) 18(n− 1)

(6, 6) 27n2 − 57n+ 30

We consider the following cases for the possible values of α.
Case 1. α = 1
We apply the formula of Rα(G) given by equation (1) for α = 1. By using edge
partition given in Table 2, we get

R1(G) = 972n2 − 1224n+ 414.

Case 2. α =
1

2

We apply the formula of Rα(G) given by equation (1) for α =
1

2
. By using edge

partition given in table 2, we get

R 1
2
(G) = 162n2 + (12

√
15 + 18

√
2 + 18

√
30− 342)n− 12

√
15− 18

√
30 + 234.

Case 3. α = −1
We apply the formula of Rα(G) given by equation (1) for α = −1. By using edge
partition given in table 2, we get

R−1(G) =
3

4
n2 +

3

20
n+

1

10
.
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Case 4. α = −1

2

We apply the formula of Rα(G) given by equation (1) for α = −1

2
. By using edge

partition given in Table 2, we get

R− 1
2
(G) =

9

2
n2 +

(
4
√

15

5
+

3
√

30

5
+
√

2− 19

2

)
n− 4

√
15

5
− 3
√

30

5
+ 7.

ut

In the following theorem, we compute first Zagreb index of an n-dimensional hon-
eycomb derived network of first type.

Theorem 2.1.2 For an n-dimensional honeycomb network HcDN1(n), n ≥ 3,
the first Zagreb index is equal to

M1(HcDN1(n)) = 324n2 − 336n+ 102.

Proof. Let G be the HcDN1(n) network with n ≥ 3. By using the formula given
by equation (2) and the edge partition given in table 2, we get

M1(G) = 324n2 − 336n+ 102.

ut

Now we compute ABC index of honeycomb derived network HcDN1(n).

Theorem 2.1.3 Consider the honeycomb derived network HcDN1(n), n ≥ 3,
then its ABC index is equal to

ABC(HcDN1(n)) =
9
√

10

2
n2 +

(
12
√

10

5
+

9
√

30

5
− 19

√
10

2
+ 14

)
n− 12

√
10

5
−

−9
√

30

5
+ 5
√

10 + 4.

Proof. Let G be the honeycomb derived network of first type. By using the formula
given by equation (4) and using edge partition given in Table 2, we get

ABC(G) =
9
√

10

2
n2 +

(
12
√

10

5
+

9
√

30

5
− 19

√
10

2
+ 14

)
n− 12

√
10

5
−

−9
√

30

5
+ 5
√

10 + 4.

ut

In the following theorem, we compute GA index of honeycomb derived network
HcDN1(n).
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Theorem 2.1.4 Consider the honeycomb derived network HcDN1(n), n ≥ 3,
then its GA index is equal to

GA(G) = 27n2 +

(
36
√

30

11
+ 3
√

15 + 4
√

2− 57

)
n− 36

√
30

11
− 3
√

15 + 36.

Proof. Let G be the honeycomb derived network of first type. By using the formula
given by equation (5) and using the edge partition given in Table 2, we get

GA(G) = 27n2 +

(
36
√

30

11
+ 3
√

15 + 4
√

2− 57

)
n− 36

√
30

11
− 3
√

15 + 36.

ut

Now we compute the above discussed degree based topological indices for the sec-
ond type of honeycomb derived networks, that is HcDN2(n). An HcDN2(n) network
is defined as the union of honeycomb network, its stellation and its bounded dual as
shown in Table 1. A 3-dimensional HcDN2 network is depicted in Fig. 4 in which
black colored graph is a honeycomb network, blue colored graph is its stellation and
the red color represents its bounded dual.

Fig. 4. An HcDN2(n) network with n = 3.

In following theorems, we calculate the exact expressions for the general Randić
index Rα(G) for different values of α.

Theorem 2.1.5 Consider the honeycomb derived HcDN2(n) networks with n ≥
3, then its general Randić index is equal to
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Rα(HcDN2(n)) =



2916n2 − 5136n+ 2310, α = 1;

(108
√

2 + 162)n2 + (48
√

15 + 36
√

30−
174
√

2− 462)n− 84
√

15 + 72
√

3− 66
√

30+

36
√

5− 132
√

2 + 36
√

6 + 36
√

10 + 270, α =
1

2
;

9

16
n2 +

27

80
n+

97

1800
, α = −1;(

3
√

2

2
+

9

4

)
n2 +

(
7
√

15

5
+

3
√

30

5
− 33

√
2

10
−

113

20

)
n− 2

√
15 +

5
√

3

3
−
√

30 +
4
√

5

5
+

11
√

2

10
+

2
√

6

3
+

2
√

10

5
+

47

10
, α = −1

2
.

Proof. Let G be the HcDN2(n) network of dimension n, where n ≥ 3. The vertex
and edge cardinalities of HcDN2(n) are 9n2−3n+1 and 27n2−21n+6 respectively.
There are sixteen types of edges in an HcDN2(n) network, based on degrees of end
vertices of each edge. Table 3 shows such an edge partition of HcDN2(n).

Table 3. Edge partition of honeycomb
derived network HcDN2(n), n ≥ 3 based on

degrees of end vertices of each edge

(du, dv) where uv ∈ E(G) Number of edges

(3, 3) 6

(3, 5) 12(n− 1)

(3, 9) 12

(3, 10) 6(n− 2)

(5, 6) 6(n− 1)

(5, 9) 12

(5, 10) 12(n− 2)

(6, 6) 9n2 − 21n+ 12

(6, 9) 12

(6, 10) 18(n− 2)

(6, 12) 18n2 − 54n+ 42

(9, 10) 12

(9, 12) 6

(10, 10) 6(n− 3)

(10, 12) 12(n− 2)

(12, 12) 9n2 − 33n+ 30

We consider the following cases for the possible values of α.
Case 1. α = 1
We apply the formula of Rα(G) given by equation (1) for α = 1. By using edge
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partition given in Table 3, we get

R1(G) = 2916n2 − 5136n+ 2310.

Case 2. α =
1

2

Using the formula of Rα(G) given by equation (1) for α =
1

2
and edge partition given

in Table 3, after some simplification, we get

R 1
2
(G) = (108

√
2 + 162)n2 + (48

√
15 + 36

√
30− 174

√
2− 462)n− 84

√
15 + 72

√
3−

−66
√

30 + 36
√

5− 132
√

2 + 36
√

6 + 36
√

10 + 270.

Case 3. α = −1
The formula of Rα(G) is given by equation (1) for α = −1. By using edge partition
given in Table 3 and after some simplification, we get

R−1(G) =
9

16
n2 +

27

80
n+

97

1800
.

Case 4. α = −1

2

Using the formula of Rα(G) given by equation (1) for α = −1

2
and the edge partition

given in Table 3, after some simplification, we get

R− 1
2
(G) =

(3
√

2

2
+

9

4

)
n2 +

(7
√

15

5
+

3
√

30

5
− 33

√
2

10
− 113

20

)
n− 2

√
15 +

5
√

3

3
−

−
√

30 +
4
√

5

5
+

11
√

2

10
+

2
√

6

3
+

2
√

10

5
+

47

10
.

ut

In the following theorem, first Zagreb index of an n-dimensional honeycomb de-
rived network of second type is computed.

Theorem 2.1.6. For an n-dimensional HcDN2(n) network with n ≥ 3, the first
Zagreb index is equal to

M1(HcDN2(n)) = 648n2 − 924n+ 360.

Proof. Let G be the HcDN2(n) network with n ≥ 3. By using the formula given
by equation (2) and some easy calculations, we get

M1(G) = 648n2 − 924n+ 360.

ut

Now we compute ABC index of honeycomb derived network HcDN2(n).



Computing Topological Indices of Honeycomb Derived Networks 155

Theorem 2.1.7. Consider the honeycomb derived network HcDN2(n), n ≥ 3,
then its ABC index is equal to

ABC(HcDN2(n)) =

(
3
√

10

2
+

3
√

22

4
+ 6
√

2

)
n2 +

(
12
√

10

5
+

√
330

5
+

3
√

30

5
+

+
6
√

26

5
+

9
√

2

5
+

3
√

210

5
− 7
√

10

2
− 11

√
22

4
− 12

√
10

5
+

+
4
√

30

3
− 2
√

330

5
− 3
√

30

5
+

8
√

15

5
− 18

√
2 + 2

√
6

)
n−

−12
√

26

5
+

2
√

78

3
+

2
√

170

30
− 6
√

210

5
+

5
√

22

2
− 9
√

2

5
+

√
57

3
+

+2
√

10 + 14
√

2− 4
√

6.

Proof. Let G be the honeycomb derived network of first type. By using the formula
given by equation (4) and doing simplification, we get the following result:

ABC(HcDN2(n)) =

(
3
√

10

2
+

3
√

22

4
+ 6
√

2

)
n2 +

(
12
√

10

5
+

√
330

5
+

3
√

30

5
+

+
6
√

26

5
+

9
√

2

5
+

3
√

210

5
− 7
√

10

2
− 11

√
22

4
− 12

√
10

5
+

+
4
√

30

3
− 2
√

330

5
− 3
√

30

5
+

8
√

15

5
− 18

√
2 + 2

√
6

)
n−

−12
√

26

5
+

2
√

78

3
+

2
√

170

30
− 6
√

210

5
+

5
√

22

2
− 9
√

2

5
+

√
57

3
+

+2
√

10 + 14
√

2− 4
√

6.

ut

The following theorem exhibits GA index of honeycomb derived network of second
version i.e. HcDN2(n).

Theorem 2.1.8. Consider the honeycomb derived network HcDN2(n), n ≥ 3,
then its GA index is equal to

GA(HcDN2(n)) =

(
12
√

2 + 18

)
n2 +

(
600
√

30

143
+

9
√

15

2
+ 3
√

15− 28
√

2− 48

)
n−

−1044
√

30

143
+

36
√

5

7
+

24
√

6

5
+

72
√

10

19
+

24
√

3

7
− 3
√

15 + 6
√

3−

−16
√

2− 9
√

15 + 28
√

2 + 30.

Proof. Let G be the honeycomb derived network of first type. By using the formula
given by equation (5) and the edge partition given in Table 3, after simplification
we get:
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GA(HcDN2(n)) =

(
12
√

2 + 18

)
n2 +

(
600
√

30

143
+

9
√

15

2
+ 3
√

15− 28
√

2− 48

)
n−

−1044
√

30

143
+

36
√

5

7
+

24
√

6

5
+

72
√

10

19
+

24
√

3

7
− 3
√

15 + 6
√

3−

−16
√

2− 9
√

15 + 28
√

2 + 30.

ut
Now we study above discussed topological indices for third type of honeycomb

derived networks, that is HcDN3(n). An HcDN3(n) network is defined as a union of
honeycomb network, its stellation and its medial. The vertex and edge cardinalities of
aHcDN3(n) network are 18n2−6n+1 and 54n2−42n+12 respectively. AnHcDN3(3)
is depicted in Fig. 5, in which green colored graph is the medial of honeycomb network.

Fig. 5. An HcDN3(n) network with n = 3.

Now we compute general Randić index for different values of α.

Theorem 2.1.9.Consider the honeycomb derived HcDN3(n) networks with
n ≥ 3, then its general Randić index is equal to:

Rα(HcDN3(n)) =



1944n2 − 2472n+ 876, α = 1;

324n2 + (24
√

3 + 18
√

2 + 18
√

30+

24
√

5 + 24
√

6− 624)n− 24
√

5−
−24
√

6− 18
√

30 + 324, α =
1

2
;

3

2
n2 +

49

120
n− 1

5
, α = −1;

9n2 +
(6
√

5

5
+

3
√

30

5
+ 2
√

3 +
√

2 +
√

6− 33

2

)
n−

−6
√

5

5
− 3
√

30

5
−
√

6− 9, α = −1

2
.
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Proof. Let G be the HcDN3(n) network of dimension n. There are seven types
of edges in HcDN3(n) based on degrees of end vertices of each edge. Table 4 shows
such an edge partition of HcDN3(n).

Table 4. Edge partition of honeycomb
derived network HcDN3(n), n ≥ 3 based on

degrees of end vertices of each edge

(du, dv) where uv ∈ E(G) Number of edges

(3, 4) 12n

(3, 6) 6n

(4, 4) 6n

(4, 5) 12(n− 1)

(4, 6) 12(n− 1)

(5, 6) 18(n− 1)

(6, 6) 54n2 − 108n+ 54

We consider the following cases for the possible values of α.
Case 1. α = 1
We apply the formula of Rα(G) given by equation (1) for α = 1. By using edge
partition given in Table 4 and after simplifying, we get

R1(G) = 1944n2 − 2472n+ 876.

Case 2. α =
1

2
We apply the formula of Rα(G) given by equation (1) for α =

1

2
. By using edge

partition given in Table 4, some simplification gives

R 1
2
(G) = 324n2 + (24

√
3 + 18

√
2 + 18

√
30 + 24

√
5 + 24

√
6− 624)n−

24
√

5− 24
√

6− 18
√

30 + 324.

Case 3. α = −1
We apply the formula of Rα(G) given by equation (1) for α = −1. By using edge
partition given in Table 4, then after simplification we get

R−1(G) =
3

2
n2 +

49

120
n− 1

5
.

Case 4. α = −1

2
We apply the formula of Rα(G) given by equation (1) for α = −1

2
. By using edge

partition given in Table 4, then after simplification we get

R− 1
2
(G) = 9n2 +

(
6
√

5

5
+

3
√

30

5
+ 2
√

3 +
√

2 +
√

6− 33

2

)
n− 6

√
5

5
− 3
√

30

5
−
√

6− 9.

ut
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In the following theorem, we compute first Zagreb index of an n-dimensional hon-
eycomb derived network of third type.

Theorem 2.1.10.For an n-dimensional HcDN3(n) network with n ≥ 3, then
first Zagreb index is equal to:

M1(HcDN3(n)) = 648n2 − 684n+ 222.

Proof. Let G be the HcDN3(n) network with n ≥ 3. By using the formula given
by equation (2) and using edge partition given in Table 4 and after simplifications we
get

M1(G) = 648n2 − 684n+ 222.

ut
Now we compute ABC index of honeycomb derived network HcDN3(n).

Theorem 2.1.11.Consider the honeycomb derived network HcDN3(n), n ≥ 3,
then its ABC index is equal to:

ABC(HcDN3(n)) = 9
√

10n2 +

(
6
√

35

5
+

9
√

30

5
+

3
√

6

2
+ 2
√

15 + 4
√

3 +
√

14−

−18

)
n− 6

√
35

5
− 9
√

30

5
+ 9
√

10− 4
√

3.

Proof. Let G be the honeycomb derived network of third type. By using the for-
mula given by equation (4) and by using edge partition given in Table 4 and some
simplifications, we get:

ABC(HcDN3(n)) = 9
√

10n2 +

(
6
√

35

5
+

9
√

30

5
+

3
√

6

2
+ 2
√

15 + 4
√

3 +
√

14−

−18

)
n− 6

√
35

5
− 9
√

30

5
+ 9
√

10− 4
√

3.

ut
In the following theorem, we compute GA index of honeycomb derived network

HcDN3(n).

Theorem 2.1.12.Consider the honeycomb derived network HcDN3(n), n ≥ 3,
then its GA index is equal to:

GA(G) = 54n2 +

(
48
√

3

7
+

24
√

6

5
+

16
√

5

3
+

36
√

30

11
+ 4
√

2− 102

)
n− 16

√
5

3
−

−24
√

6

5
− 36

√
30

11
+ 54.

Proof. LetG be the honeycomb derived network of third type. By using the formula
given by equation (1) and using edge partition given in Table 4 and doing some
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simplifications, we get:

GA(G) = 54n2 +

(
48
√

3

7
+

24
√

6

5
+

16
√

5

3
+

36
√

30

11
+ 4
√

2− 102

)
n−

−16
√

5

3
− 24

√
6

5
− 36

√
30

11
+ 54.

ut
Now we study the topological indices of the fourth type of honeycomb derived

networks, that is HcDN4(n). An HcDN4(n) network is defined as the union of
honeycomb network, its stellation, its medial and its bounded dual, as shown in Table
1. A 3-dimensional HcDN4 network is depicted in Fig. 6, in which black colored graph
is honeycomb network, blue colored graph is its stellation, green color is its medial
and red color represents its bounded dual. This network has 18n2 − 6n + 1 vertices
and 63n2 − 57n+ 18 edges.

Vertices of this type are of degree 4,
because the starting and ending vertices
of red edges are central vertices
of hexagons.

Fig. 6. An HcDN4(n) network with n = 3.

In the next theorem, we compute exact expressions for the general Randić index

Rα(G), for α = 1,
1

2
,−1,−1

2
.

Theorem 2.1.13.Consider the honeycomb derived network HcDN4(n) with n ≥
3, then its general Randić index is equal to:
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Rα(HcDN4(n)) =



3888n2 − 6384n+ 2772, α = 1;

(108
√

2 + 324)n2 + (24
√

3 + 36
√

30 + 24
√

5 + 24
√

6+

+36
√

15− 264
√

2− 744)n+ 72
√

3− 66
√

30− 24
√

5+

+36
√

5− 120
√

2− 72
√

15 + 252
√

2 + 36
√

10 + 396, α =
1

2
;

21

16
n2 +

143

240
n− 443

1800
, α = −1;(

3
√

2

2
+

27

4

)
n2 +

(
3
√

15

5
+

6
√

5

5
− 33

√
2

10
+

3
√

30

5
+

+2
√

3 +
√

6− 253

20

)
n+

5
√

3

3
−
√

30− 2
√

5

5
−

−11
√

2

10
+

2
√

10

5
− 6
√

15

5
+

67

10
, α = −1

2
.

Proof. Let G be the HcDN4(n) network of dimension n with n ≥ 3. There are
eighteen types of edges in HcDN4(n), based on the degrees of end vertices of each
edge which make a partition of edge set of G. Table 5 shows such an edge partition
of HcDN4(n).

Table 5. Edge partition of honeycomb
derived network HcDN4(n), n ≥ 3 based on

degrees of end vertices of each edge.

(du, dv) where uv ∈ E(G) Number of edges

(3, 4) 12n

(3, 9) 12

(3, 10) 6(n− 2)

(4, 4) 6n

(4, 5) 12(n− 1)

(4, 6) 12(n− 1)

(5, 6) 6(n− 1)

(5, 9) 12

(5, 10) 12(n− 2)

(6, 6) 36n2 − 72n+ 36

(6, 9) 12

(6, 10) 18(n− 2)

(6, 12) 18n2 − 54n+ 42

(9, 10) 12

(9, 12) 6

(10, 10) 6(n− 3)

(10, 12) 12(n− 2)

(12, 12) 9n2 − 33n+ 30

We consider the following cases for the possible values of α.

Case 1. α = 1



Computing Topological Indices of Honeycomb Derived Networks 161

Using the formula of Rα(G) given by equation (1) for α = 1 and the edge partition
given in Table 5, we get

R1(G) = 3888n2 − 6384n+ 2772.

Case 2. α =
1

2
.

Using the formula of Rα(G) given by equation (1) for α =
1

2
and using edge partition

given in Table 5, we get

R 1
2
(G) =

(
3
√

2

2
+

27

4

)
n2 +

(
3
√

15

5
+

6
√

5

5
− 33

√
2

10
+

3
√

30

5
+ 2
√

3 +
√

6−

−253

20

)
n+

5
√

3

3
−
√

30− 2
√

5

5
− 11

√
2

10
+

2
√

10

5
− 6
√

15

5
+

67

10
.

Case 3. α = −1.
Applying the formula of Rα(G) given by equation (1) for α = −1 and by using edge
partition given in Table 5, we get

R−1(G) =
21

16
n2 +

143

240
n− 443

1800
.

Case 4. α = −1

2
.

Applying the formula of Rα(G) given by equation (1) for α = −1

2
and using edge

partition given in Table 5, we get

R− 1
2
(G) =

(
3
√

2

2
+

9

4

)
n2 +

(
7
√

15

5
+

3
√

30

5
− 33

√
2

10
− 113

20

)
n− 2

√
15 +

5
√

3

3
−

−
√

30 +
4
√

5

5
+

11
√

2

10
+

2
√

6

3
+

2
√

10

5
+

47

10
.

ut

In the following theorem, we compute first Zagreb index of an n-dimensional hon-
eycomb derived network of fourth type.

Theorem 2.1.14.For an n-dimensional HcDN4(n) network with n ≥ 3, the first
Zagreb index is equal to:

M1(HcDN4(n)) = 972n2 − 1272n+ 480.

Proof. Let G be the HcDN4(n) network with n ≥ 3. By using the formula given
by equation (2) and the edge partition from Table 5, we get:

M1(G) = 972n2 − 1272n+ 480.

ut
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Now we compute ABC index of honeycomb derived network HcDN4(n).

Theorem 2.1.15.Consider the honeycomb derived network HcDN4(n), n ≥ 3,
then its ABC index is equal to:

ABC(HcDN4(n)) =

(
3
√

22

4
+ 6
√

2 + 6
√

10

)
n2 +

(
7
√

6

2
+

6
√

35

5
+

3
√

30

5
+

+
6
√

26

5
+

3
√

210

5
− 81

√
2

5
− 11

√
22

4
+

√
330

5
+ 2
√

15 +

+4
√

3− 12
√

10

)
n+

4
√

30

3
− 2
√

330

5
− 6
√

35

5
− 3
√

30

5
+

+
8
√

15

5
− 12

√
26

5
+

2
√

78

3
+

2
√

170

5
− 6
√

210

5
+

5
√

22

2
+

+
61
√

2

5
+

√
57

3
− 4
√

3 + 6
√

10− 4
√

6.

Proof. Let G be the honeycomb derived network of fourth type. By using the
formula given by equation (4) and using edge partition given in Table 5, we get:

ABC(HcDN4(n)) =

(
3
√

22

4
+ 6
√

2 + 6
√

10

)
n2 +

(
7
√

6

2
+

6
√

35

5
+

3
√

30

5
+

+
6
√

26

5
+

3
√

210

5
− 81

√
2

5
− 11

√
22

4
+

√
330

5
+ 2
√

15 +

+4
√

3− 12
√

10

)
n+

4
√

30

3
− 2
√

330

5
− 6
√

35

5
− 3
√

30

5
+

+
8
√

15

5
− 12

√
26

5
+

2
√

78

3
+

2
√

170

5
− 6
√

210

5
+

5
√

22

2
+

+
61
√

2

5
+

√
57

3
− 4
√

3 + 6
√

10− 4
√

6.

ut

In the following theorem, we compute GA index of honeycomb derived network
HcDN4(n).

Theorem 2.1.16.Consider the honeycomb derived network HcDN4(n), n ≥ 3,
then its GA index is equal to:

GA(HcDN4(n)) =

(
12
√

2 + 45

)
n2 +

(
48
√

3

7
+

600
√

30

143
+

16
√

5

3
+

24
√

6

5
+

+
9
√

15

2
− 28

√
2− 93

)
n− 1044

√
30

143
− 4
√

5

21
+

72
√

10

19
+

+
66
√

3

7
− 9
√

15 + 12
√

2 + 48.



Computing Topological Indices of Honeycomb Derived Networks 163

Proof. Let G be the honeycomb derived network of fourth type. By using the
formula given by equation (5) and using edge partition given in Table 5, we get:

GA(G) = 12n

(
2
√

3× 4

3 + 4

)
+12

(
2
√

3× 9

3 + 9

)
+(6n−12)

(
2
√

3× 10

3 + 10

)
+6n

(
2
√

4× 4

4 + 4

)
+

(12n−12)

(
2
√

4× 5

4 + 5

)
+(12n−12)

(
2
√

4× 6

4 + 6

)
+(6n−6)

(
2
√

5× 6

5 + 6

)
+12

(
2
√

5× 9

5 + 9

)
+

(12n − 24)

(
2
√

5× 10

5 + 10

)
+ (36n2 − 72n + 36)

(
2
√

6× 6

6 + 6

)
+ 12

(
2
√

6× 9

6 + 9

)
+ (18n −

−36)

(
2
√

6× 10

6 + 10

)
+(18n2−54n+42)

(
2
√

6× 12

6 + 12

)
+12

(
2
√

9× 10

9 + 10

)
+6

(
2
√

9× 12

9 + 12

)
+

(6n− 18)

(
2
√

10× 10

10 + 10

)
+ (12n− 24)

(
2
√

10× 12

10 + 12

)
+ (9n2− 33n+ 30)

(
2
√

12× 12

12 + 12

)
.

After simplification, it gives

GA(HcDN4(n)) =

(
12
√

2 + 45

)
n2 +

(
48
√

3

7
+

600
√

30

143
+

16
√

5

3
+

24
√

6

5
+

+
9
√

15

2
− 28

√
2− 93

)
n− 1044

√
30

143
− 4
√

5

21
+

72
√

10

19
+

+
66
√

3

7
− 9
√

15 + 12
√

2 + 48.

ut

3. Conclusion and general remarks

In this paper, certain degree based topological indices, namely general Randić
index (Rα), atom-bond connectivity index (ABC), geometric-arithmetic index (GA)
and first Zagreb index (M1) for hexagonal and honeycomb derived networks were
studied for the first time. We defined some new classes of networks derived from
the already existing hexagonal and honeycomb networks by using some basic graph
operations. We computed analytical close formulas of the above mentioned degree
based topological indices for these derived networks. These results provide a basis
to understand deep topology of these important networks. The reader is encouraged
to design some new architectures/networks and study their topological indices to
understand their topologies.
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Populations: a review: Evolutionary dynamics of group interactions on structured, J.
R. Soc. Interface, 10(2013), 20120997.

25. PERC M., SZOLNOKI A., Coevolutionary games-A mini review, BioSystems,
99(2010), 109–125.

26. RAJAN B., WILLIAM A., GRIGORIOUS C., STEPHEN S., On Certain Topological
Indices of Silicate, Honeycomb and Hexagonal Networks, J. Comp. Math. Sci., 5(2012),
530–535.
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