back

Multimodal neural methods in medical imaging

Super-resolving medical images can help physicians in providing more accurate diagnostics. In many situations, computed tomography (CT) or magnetic resonance imaging (MRI) techniques capture several scans (modes) during a single investigation, which can jointly be used (in a multimodal fashion) to further boost the quality of super-resolution results. To this end, we present a novel multimodal multi-head convolutional attention module to super-resolve CT and MRI scans. Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple concatenated input tensors, where the kernel (receptive field) size controls the reduction rate of the spatial attention, and the number of convolutional filters controls the reduction rate of the channel attention, respectively. Moreover, we present a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans and the other way around. Solving this task has two important applications: (i) to automatically generate contrast CT scans for patients for whom injecting contrast substance is not an option, and (ii) to enhance the alignment between contrast and non-contrast CT by reducing the differences induced by the contrast substance before registration.